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The numerical series 2 1,s converges under the condition O<f<l assumed, consequently, 
the sequence of its partial sums is fundamental. Therefore, the last expression tends to 
zero as m-09,n-cc in the chain of estimates presented. 

Summarizing, the solution of the thermoelasticity problem for an inhomogeneous body 
can be sought by the perturbation method in the form of the series (2.2) that converges in 
the energy space metric and in theequivalent metric L,(V). The stresses #) are here 

defined uniquely from the recursion sequence of problems (2.3),(2.4),(2.5). 
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EQUILIBRIUM OF A PRESTRESSED ELASTIC BODY WEAKENED BY A PLANE ELLIPTICALCRACK* 

V.M. ALEKSANDROV and B.V. SOBOL' 

The problem of normal pressure loading of the edges of a plane elliptical 
crack is considered. The crack subjected to the load is in the open state. 
The medium in which it is located is frist subjected to homogeneous 
biaxial tension or compression along the plane of the crack. A model of 

incompressible neo-Hooke material is considered /l/. The problem is reduced 
to solving a singular integral equation of the first kind. In the case 
when the intensity of the initial loading is identical in both directions, 
the problen has an exact solution. If the coefficients of preliminary 
tension differ slightly, construction of the solution of the problem is 
possible by an asymptotic method /2/. It is shown that as in the case of 
equal coefficients /3/**,theinitialstressdoesnot alter the order of the 
singularity of the stress field near the crack edge and only affects the 
normal stress intensity factor. (**Seealso: Filippova, L.M. On the 
opening of a circular crack in a prestressed elastic body. Second All- 

Union Scientific Conference, "Mixed Problems of the Mechanics of a 
Deformable Body". Abstracts of Reports /in Russian/, Dnepropetrovsk 
State Univ.., 1981) 

Analogous problems are considered in 14, 5/far the case of equal 
prestrain coefficients in a body containing a circular crack. A solution 
/4/ is constructed for the axisymmetric problem for a layer under different 
conditions on its faces, and it is shown /5/ that it is possible to use 
the solution of the problem concerning a crack in an anisotropic material. 
A solution of the axisymmetric problem is constructed /6/ in the case of 
radial finite prestrain. An asymptotic solution /7/ is obtained for the 
spatial contact problem for a prestressed elastic body. 

1. Let a crack occupying the domain $2, in planform be located in the plane s= 0 of an 
elastic space. Uniform loads c== I, and oy= f, act in two mutually perpendicular directions 

l Prikl. Eatem.M&har..,49,2,348-352,1985 
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at infinity, causing the finite deformation of a neo-Hooke body (Fig-l). The following 
equilibrium equations result from the relationships of the theory of small deformations 
imposed on a finite deformation /l/, anddescribe the deformation of a prestressed body in the 
case of a neo-Hooke material /7/: 

0.1) 

Here L = {u,v,w) is the additional displacement vector, 5, y,z are Cartesian coordinates 
in the prestrained state, g is a function of the additional pressure whose presence is 
related to the incompressibility of the material, A,,&, ?., are the initial stretch coefficients 
along the coordinate axes, and G is a constant of the material. 

Since the material is incompressible, the relationship i&&,=1 holds /l/ for the 
principal stretch coefficients. It is assumed that u,=O in the prestressed state. 

The relationship of the initial stretch 
coefficients to the stresses has the form 

1.25 

f 

0. 7.5 
A”O.75 I 1. 2,5 A 

Fig.1 

load applied to the crack edges. 

Sn particular, let the domain occupied by the 
crack in the unstressed state be elliptical R,: 221 
Q+#albPf 1. In this case, as a result of the pre- 
strain the crack occupies the planform domain R: 12: 
ox-j- y%b*<l whose dimensions are related to the crack 
initial dimensions as follows: d = +I, and b = i.:b, 
In particular, the circular crack can take an 
elliptical form (if A, # i.,) and for an appropriate 
selection of the prestrain coefficients the elliptical 
crack can indeed become circular. 

We introduce the notation G~=-P(~,~J for the 

By virtue of the symmetry of the problem about the L= 0 plane, we can represent the 
boundary conditions in this plane in the form 

(I,?) 

._a._oa~ q-GGhl-h?-F=-$.: (r,y)EO. IL = 0; (7. I) Sk R 

A consequence of (1.1) is the Laplace equation for the function 9 (I. Y. ::, which can 
be used to determine the additional pressure function, 

We apply a two-dimensional Fourier integral transform 

!*(a. p.2)~ T T J(r,y,~)e-~(~~~(,“)d*dp 
-P -x 

(I ..?I 

to (1.11, the Laplace equation A9= 0, and the boundary conditions (1.2). 
Consequently, we obtain a system of ordinary differential equations with constant 

coefficients 

For Z= 0 the boundary conditions in terms of the Fourier transforms become 

(I.41 

We obtain directly from Cl.61 

q’ = Q (a. 8, P. (13) 

This enables US to construct a general solution of the system of differential Eq.(1.4). 
Solving each separately, we find 
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(1.9) 

Using the incompressibility condition in the form (1.5) we can eliminate W(a.6) from 
(1.9) 

II.(a b) =iac (a,B)A PI'@, B) 
IJ2v 

By satisfying the boundary conditions (1.7), we obtain 

q’ = $ h’ (a, f3. &AZ) Y* 

Hence, the following integral equation for determining the vertical displacement function 
for the crack edge results from the passage to Fourier originals: 

(1.10) 

2. We consider the case when the initial stretch coefficients are identical in both 
directions, i.e., L1 = I.? = 2.. Here evidently V = L% and 

Because of direct calculations /8/, the integral Eq.il.10) is reduced in the case under 
consideration to the form 

T(i.)3~~y(*,Y)~=-~~(*.Y) (2.1) 
'n' 

A=d2 .a2 
gT7' 8Y 

R = 1/ (I - Ey + (y-q)* 

As is easy to see, the function T(i.) increases monotonically for h*<I<cu; KG.*)= 0, ?.* = 
0.667. It has been established /3, j/that as ).- A* the compressed spaced buckles. This 
limit case in the problem under consideration corresponds here to fracture of a neo-Hookean 
body with a crack, irrespective of the magnitude of the applied additional pressure. 

If there is no prestrair. (?.= 1). then the corresponding equation of the classical problem 
results from integral Eq.(2.1) in the case of an incompressible material (i.e., Poisson's 
ratio equals I'::. 

we assume furtherthatthe stretch coefficients in the directions Of the Coordinate axes UzandOy 

are distinct but i.,= i.~ E and i.?= i.- ehere, and it is assumed that ~'i-d< 1. In this case the 
following asymptotic expansion is possible: 

,?‘ (1, 6, ;.:, i,2) = D (3, 6. i..~! = 2T (;.) z - 211 (i.) i .? - 0 ($2) t2.3 
% 

.I/ Ii.? = ;.’ - 2j.6 - ;. 3 - 2 
p.2 (i.5 _ 1 j: 

As in the preceding case, such a representation enables the kernel of the integral Eq. 
(1.10) to be evaluated. Using the resillts in /8/, we note that 

We therefore obtain the following integral equation in the function y(z. y! in the case 

under consideration 

T ,;,, 1 i \; .; (5, ',) $ - .!L$! t (~-2J(~.;(:.‘,1?.$ {2.3) 

'n 'ri 

(,{-‘I_=- Lrii.,,': (I.J,)ER. 
G' 

The integral Eq.(2.2) is obtained from (2.3) by passing to the limit as E-. 0. 

3. We will now construct the asymptotic solution of (2.3) in the case of an elliptical 
domain R. We here seek the vertical displacement function for the crack edges in the form 
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(3.1) 

Substituting (3.1) into (2.3) and equating expressions for identical powers of c, we 
obtain a system of integral equations to determine the first two terms in expansion (3.1): 

(3.2) 

Using the result obtained in /9/ we can show that for 

P (2, Y) = i j r+Z=fl 
pify Pi,-con~t i ) 

the solution of the first equation of (3.2) for the elliptical domain R has the form 

The coefficients gil are expressed in terms of pi, according to the scheme elucidated 

in /2/, say. 
We will consider the case of uniform pressure on the crack edges p(r,y)=p= coast. 

Solving the system of Eqs.(3.2) successively as was done in /2/, say, we obtain 

To be specific, we assume here that LI > b; K (k) and E(k) are the complete elliptic 
integrals of the first and second kinds, respectively. 

Therefore, the result (3.3) enables us to conclude that in the case when the initial 
stretch coefficients are sufficiently close in both directions, as when they are equal, the 
prestrain will not change the order of the singularity in the neighbourhood of the crack 
contour. The normal stress intensity factor is here proportional to the corresponding 
quantity in the classical problem (i.= 1. E = 0). 

It is convenient to consider K, = KIoiKlr as the parameter characterizing the change in 

the normal stress intensity factor because of prestrain, where An, is the normal stress 

intensity factor in the neighbourhood of an elliptical crack contour when the body is subjected 
to finite prestrain. The stretch intensity is identical in both directions (&= hl= A). 
The quantity A,, corresponds to the case of no prestrain (1. = i). 

A graph of the change in the parameter XI = i.‘T 

Ll 0.25 U. S 0. 75 k (i.) is in Fig. 1. If the body is subjected to 

A ) 5 initial stretch (;,>I). then N,<l. This indicates 
that the initial biaxial tension in the plane of 

2.5 

;s ; : 

k!#iiil 

0. 75 the crack will contribute to strengthening of the 
body compared with the classical case 1= 1. In 

2 
other words, initial biaxial finite stretch reduces 

I 5. 5 

; : 
the value of the normal stress intensity factor. 
In the case when the body is subjected to biaxial 

1. 5 D. 25 

I' ( 
compression in the plane of the crack 1*<7.<i, 
the value of the normal stress intensity factor 

I G increases. 
0.5 A'U.75 ? 1.25 A 

This case corresponds to a reduction 
in the carrying capacity of the body containing 

Fig.2 the plane crack. 
In the case when the prestrain coefficients 

7.1 and h, differ slightly, the normal stress intensity coefficient K,, should be calculated 

from the formula A,, = A, II - eB (k) .4 (?.)I A,. i 0 (~2). 
Changes in the coefficients A 0.) and B(k) are shown in Fig.2 for the appropriate 

parameters. 
We note that although the results are obtained for a neo-Hookean material, the proposed 

method of investigating spatial problems concerning cracks in prestressed geometrically 
non-linear elastic media is applicable for any hyperelastic incompressible material. The 
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fundamental qualitative deductions also hold here. 
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